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ABSTRACT 

To solve large and small scale unconstrained optimization problems, conjugate 

gradient method (CG) is an interesting and active method to find the optimum point 

for linear and nonlinear optimization functions. Wei et al. (2006) presented an 

efficient modification of Polak-Ribiere-Polyak (1969) formula, since it passes the 

global convergence properties under several lines searches with sufficient descent 

condition. In this paper, we depict a new positive CG method derived from above 

two coefficients, the new method achieves the global convergence properties with 

the strong Wolfe-Powel, weak Wolfe Powell, and Modified Armijo line searches. 

The numerical computations with the strong Wolfe-Powell line search demonstrated 

the efficiency of the new formula is almost superior to other modern methods. 
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1. Introduction 

 The CG method is interesting tool to find the optimum solution/s for 

nonlinear unconstrained optimization functions which they are bounded 

below and their gradient is Lipschitz continuous. We consider the problem  
 

min{𝑓(𝑥): 𝑥 ∈ ℝ𝑛},                                             (1) 

 

where 𝑓 is continuous differentiable function and its gradient is written by 

𝑔(𝑥) = ∇𝑓(𝑥). The CG method is iterative method starting from 𝑥0 ∈ ℝ𝑛
 

which is given as follows, 
 

𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘 , 𝑘 = 0, 1, 2, 3, …,                               (2) 
 

and 𝑑𝑘 denote the search direction defined by, 

 

𝑑𝑘 = {
−𝑔𝑘 𝑖𝑓 𝑘 = 0

−𝑔𝑘 + 𝛽𝑘𝑑𝑘−1 𝑖𝑓 𝑘 ≥ 1
                                         (3) 

 

where 𝑔𝑘 = 𝑔(𝑥𝑘), 𝛽𝑘  is a scalar (CG coefficient or CG method ) and 

𝛼𝑘 > 0 is the steplength obtained to implementation of CG method.  In 

order to find 𝛼𝑘 there are several line searches, the following line searches 

are used to find the step size in order to get the global convergence 

properties: 
 

- Strong Wolfe-Powell  
 

𝑓(𝑥𝑘 + 𝛼𝑘𝑑𝑘) ≤ 𝑓(𝑥𝑘) + 𝛿𝛼𝑘𝑔𝑘
𝑇𝑑𝑘                               (4) 

|𝑔(𝑥𝑘 + 𝛼𝑘𝑑𝑘)𝑇𝑑𝑘| ≤ 𝜎|𝑔𝑘
𝑇𝑑𝑘|                                    (5) 

 

where 0 < 𝛿 < 𝜎 < 1. 
 

- Weak Wolfe-Powell , 
 

𝑓(𝑥𝑘 + 𝛼𝑘𝑑𝑘) ≤ 𝑓(𝑥𝑘) + 𝛿𝛼𝑘𝑔𝑘
𝑇𝑑𝑘                                    (6) 

𝑔(𝑥𝑘 + 𝛼𝑘𝑑𝑘)𝑇𝑑𝑘 ≥ 𝜎𝑔𝑘
𝑇𝑑𝑘.                                             (7) 

 

where 0 < 𝛿 < 𝜎 < 1. 
 

- Modified Wolfe-Powell (MWL) which proposed by (Yu et al., 2009). 
 

𝑓(𝑥𝑘 + 𝛼𝑘𝑑𝑘) − 𝑓(𝑥𝑘) ≤ min{𝛿𝑡𝑘𝑔𝑘
𝑇𝑑𝑘, −𝛾𝑡𝑘

2‖𝑑𝑘‖2}               (8) 

𝑔(𝑥𝑘 + 𝑡𝑘𝑑𝑘)𝑇𝑑𝑘 ≥ 𝜎𝑔𝑘
𝑇𝑑𝑘                                                    (9)    

     

where 𝛿 ∈ (0,1), 𝜎 ∈ (𝛿, 1) and 𝛾 > 0. 
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In particular strong Wolfe-Powell line search is used to find the 

numerical results in Section 4, since it does not need expensive 

computational work to find the best steplength. 

 

The most famous formulas for CG method formulas are (Hestenses 

and Stiefel, 1952) (HS), (Fletcher and Reeves, 1964) (FR), and (Polak and 

Ribiere, 1969) (PRP), which they are given as follows respectively, 

 

𝛽𝑘
𝐻𝑆 =

𝑔𝑘
𝑇(𝑔𝑘 − 𝑔𝑘−1)

(𝑔𝑘−1
𝑇 𝑔𝑘−1)𝑑𝑘−1

,     𝛽𝑘
𝑃𝑅𝑃 =

𝑔𝑘
𝑇(𝑔𝑘 − 𝑔𝑘−1)

𝑔𝑘−1
𝑇 𝑔𝑘−1

,     𝛽𝑘
𝐹𝑅 =

𝑔𝑘
𝑇𝑔𝑘

𝑔𝑘−1
𝑇 𝑔𝑘−1

. 

     

 

The convergence properties for FR, and PRP formulas with exact line 

search was studied by Zoutendijk, 1970, and Polak and Ribiere, 1969. 

Gilbert and Nocedal, 1992, proved that max{0, PRP} method is globally 

convergent by using more than one line search. There are many researches 

interested with the CG methods. We suggest the following references 

(Alhawarat et al., 2014; Rivaie et al., 2012; Mamat et al., 2010). 

 

 Wei et al. (2006) presented one of the best CG formulas which is 

similar to PRP method. In this paper, we refer it to WYL formula, one of 

the advantages for WYL coefficient is non-negative method. Many 

modifications have appeared, as follows, see (Wei et al., 2006; Shengwei et 

al., 2007; Zhang, 2009). 

 

𝛽𝑘
𝑁𝑃𝑅𝑃 =

‖𝑔𝑘‖2 −
‖𝑔𝑘‖

‖𝑔𝑘−1‖
‖𝑔𝑘

𝑇𝑔𝑘−1‖

‖𝑔𝑘−1‖2
,     𝛽𝑘

𝑊𝑌𝐿 =
‖𝑔𝑘‖2 −

‖𝑔𝑘‖

‖𝑔𝑘−1‖
𝑔𝑘

𝑇𝑔𝑘−1

‖𝑔𝑘−1‖2
 

𝛽𝑘
𝑉𝐻𝑆 =

‖𝑔𝑘‖2 −
‖𝑔𝑘‖

‖𝑔𝑘−1‖
𝑔𝑘

𝑇𝑔𝑘−1

𝑑𝑘−1
𝑇 (𝑔𝑘 − 𝑔𝑘−1)

. 

             

 

 

2. The Modified Formula  

   The new CG formula in this paper is given as follows 

 

𝛽𝑘
𝐴𝑀𝑍𝑅 =

𝑔𝑘
𝑇(𝜏𝑘.𝑔𝑘−𝑔𝑘−1)

𝜏𝑘.(𝑔𝑘−1
𝑇 𝑔𝑘−1)

                              (10) 

where 𝜏𝑘 =
‖𝑔𝑘−1‖

‖𝑔𝑘‖
 and ‖. ‖ is the Euclidean norm. 𝛽𝑘

𝐴𝑀𝑍𝑅 is similar to 𝛽𝑘
𝑊𝑌𝐿 

and reveals the problem where PRP  formula failed. The following 
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simplifications are important and useful for proving the next results. The 

𝛽𝑘
𝐴𝑀𝑍𝑅 could be written as follows, 

 

𝛽𝑘
𝐴𝑀𝑍𝑅 =

𝑔𝑘
𝑇(𝜏𝑘. 𝑔𝑘 − 𝑔𝑘−1)

𝜏𝑘 . (𝑔𝑘−1
𝑇 𝑔𝑘−1)

=
‖𝑔𝑘‖2‖𝑔𝑘−1‖ − ‖𝑔𝑘‖𝑔𝑘

𝑇𝑔𝑘−1

‖𝑔𝑘−1‖3
. 

 

Using Cauchy-Schwartz inequality, 

𝛽𝑘
𝐴𝑀𝑍𝑅 =

𝑔𝑘
𝑇(𝜏𝑘.𝑔𝑘−𝑔𝑘−1)

𝜏𝑘.(𝑔𝑘−1
𝑇 𝑔𝑘−1)

≥
‖𝑔𝑘‖2‖𝑔𝑘−1‖−‖𝑔𝑘‖2‖𝑔𝑘−1‖

‖𝑔𝑘−1‖3 = 0           (11) 

and  

𝛽𝑘
𝐴𝑀𝑍𝑅 =

𝑔𝑘
𝑇(𝜏𝑘.𝑔𝑘−𝑔𝑘−1)

𝜏𝑘.(𝑔𝑘−1
𝑇 𝑔𝑘−1)

≤
‖𝑔𝑘‖2‖𝑔𝑘−1‖+‖𝑔𝑘‖2‖𝑔𝑘−1‖

‖𝑔𝑘−1‖3 =
2‖𝑔𝑘‖2

‖𝑔𝑘−1‖2.       (12) 

 

 

3. Global Convergence Properties  

The following assumption is required for the following theorems. 

 

Assumption 1. 

A. 𝑓(𝑥) is bounded on the level set 𝐴 = {𝑥 ∈ ℝ𝑛: 𝑓(𝑥) ≤ 𝑓(𝑥1)} where 𝑥1  

is an initial point. 

 

B. In some neighborhood 𝑊  of 𝐴 , 𝑓  is continuous and differentiable 

function, and its gradient is Lipschitz continuous, i.e., there exists a 

constant 𝐿 > 0 such that for any 𝑥, 𝑦 ∈ 𝑊 we have, 

 

‖𝑔(𝑥) − 𝑔(𝑦)‖ ≤ 𝐿‖𝑥 − 𝑦‖. 
 

One of the important rules in CG method is the descent property, namely  

 

𝑔𝑘
𝑇𝑑𝑘 ≤ −‖𝑔𝑘‖2, where 𝑘 ≥ 0. 

 

To establish the global convergence of the CG methods we need the 

following lemma. 

 

Lemma 1. (Zoutendijk, 1970). Suppose Assumptions 1 with the descent 

property are hold. Let any form of (3), and 𝛼𝑘 computed by Wolfe-Powell 

line search. Then    

∑
(𝑔𝑘

𝑇𝑑𝑘)2

‖𝑑𝑘‖2
∞
𝑘=0 < ∞                                      (13)     

 

holds, which is called as Zoutendijk condition.  
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The sufficient descent condition is given as follows, 

 The sufficient decent condition is given as follows,  

𝑔𝑘
𝑇𝑑𝑘 ≤ −𝑐‖𝑔𝑘‖2,  where 𝑘 ≥ 0 and 𝑐 ∈ (0, 1).               (14) 

 

Theorem 1. Consider the sequences 𝑔𝑘  and 𝑑𝑘  are constructed by 

Algorithm 1 and 𝛼𝑘 is computed by (4) and (5) if 𝜎 ∈ (0, 1
4⁄ ). Then (14) 

holds.  

 

Proof.  From (3), for 𝑘 = 0 , we have 𝑔0
𝑇𝑑0 = −‖𝑔0‖2 ≤ −𝑐‖𝑔0‖2 . 

Suppose that (14) is true until 𝑘 − 1  for 𝑘 ≥ 1 . Multiply (3) by 𝑔𝑘
𝑇 , it 

becomes 

 

           𝑔𝑘
𝑇𝑑𝑘 = 𝑔𝑘

𝑇(−𝑔𝑘 + 𝛽𝑘𝑑𝑘−1) = −‖𝑔𝑘‖2 + 𝛽𝑘𝑔𝑘
𝑇𝑑𝑘−1 

                       = −‖𝑔𝑘‖2 + 𝑔𝑘
𝑇𝑑𝑘−1 (

‖𝑔𝑘−1‖‖𝑔𝑘‖2 − ‖𝑔𝑘‖𝑔𝑘
𝑇𝑔𝑘−1

‖𝑔𝑘−1‖3 ). 

 

Divided both side by ‖𝑔𝑘‖2 yield,    

     
𝑔𝑘

𝑇𝑑𝑘

‖𝑔𝑘‖2 = −1 +
𝑔𝑘

𝑇𝑑𝑘−1

‖𝑔𝑘−1‖2 (
‖𝑔𝑘−1‖‖𝑔𝑘‖2−‖𝑔𝑘‖𝑔𝑘

𝑇𝑔𝑘−1

‖𝑔𝑘‖2‖𝑔𝑘−1‖
).                 (15)       

 

Using Cauchy-Schwarz inequality, we have    

   

0 ≤
‖𝑔𝑘−1‖‖𝑔𝑘‖

2
−‖𝑔𝑘‖𝑔𝑘

𝑇𝑔𝑘−1

‖𝑔𝑘‖
2

‖𝑔𝑘−1‖
≤ 2.                               (16)                                            

 

Using (5), (15) and (16), we have 

 

−1 + 2𝜎
𝑔𝑘−1

𝑇 𝑑𝑘−1

‖𝑔𝑘−1‖2
≤

𝑔𝑘
𝑇𝑑𝑘

‖𝑔𝑘‖2
≤ −1 − 2𝜎

𝑔𝑘−1
𝑇 𝑑𝑘−1

‖𝑔𝑘−1‖2
. 

 

By induction hypothesis, 𝑔𝑘−1
𝑇 𝑑𝑘−1 ≤ −𝑐‖𝑔𝑘−1‖2 for 𝑘 ≥ 1, this implies 

that 

− ∑(2𝜎)𝑗 ≤
𝑔𝑘

𝑇𝑑𝑘

‖𝑔𝑘‖2

𝑘

𝑗=0

≤ −2 + ∑(2𝜎)𝑗

𝑘

𝑗=0

. 

 

Since ∑ (2𝜎)𝑗 ≤
1

1−2𝜎
𝑘
𝑗=0 , then 
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−
1

1 − 2𝜎
≤

𝑔𝑘
𝑇𝑑𝑘

‖𝑔𝑘‖2
≤ −2 +

1

1 − 2𝜎
. 

 

Since 0 < 2𝜎 < 1
2⁄  when 0 < 𝜎 < 1

4⁄ , we have 1 <
1

1−2𝜎
< 2.  Let 

𝑐 = 2 −
1

1−2𝜎
∈ (0, 1), then 𝑐 − 2 ≤

𝑔𝑘
𝑇𝑑𝑘

‖𝑔𝑘‖2 ≤ −𝑐. So 

𝑔𝑘
𝑇𝑑𝑘 ≤ −𝑐‖𝑔𝑘‖2  where 𝑐 ∈ (0,1).  ∎ 

 

 

3.1 Global Convergence with the Wolfe-Powell Line Search 

Gilbert and Nocedal, 1992, present an important theorem to find the global 

convergent for a positive part of PRP method, it summarized by three 

conditions, one of them called property star, which plays strong roles in the 

studies of CG methods. 

 

Property ∗ (Gilbert and Nocedal, 1992). Let a CG method of type (1) and 

(2), and suppose 0 < 𝛾 ≤ ‖𝑔𝑘‖ ≤ �̅�  then the CG method possesses 

property ∗ if there exists 𝑏 > 1 and 𝜆 > 0 such that for all 𝑘 ≥ 1, we get 

|𝛽𝑘| ≤ 𝑏, and if ‖𝑥𝑘 − 𝑥𝑘−1‖ ≤ 𝜆, then |𝛽𝑘| ≤
1

2𝑏
. 

 

Theorem 2. (Gilbert and Nocedal, 1992). Consider CG method of form (2) 

and (3) with 𝛽𝑘  satisfies Property ∗ , (14) holds, the line search match 

Zoutendijk condition, and Assumption 1 holds. Then the iteration are 

globally convergent. 

 

Lemma 2. Consider 𝛽𝑘
𝐴𝑀𝑍𝑅 in forms (2) and (3). If Assumption 1 holds, 

then it is satisfy Property ∗. 

 

Proof. Let 𝑏 = 2
�̅�2

𝛾2 > 1, and 𝜆 ≤
𝛾3

4𝐿�̅�2𝑏
. Then 

|𝛽𝑘
𝐴𝑀𝑍𝑅| = |

𝑔𝑘
𝑇(𝜏𝑘 . 𝑔𝑘 − 𝑔𝑘−1)

𝜏𝑘 . (𝑔𝑘−1
𝑇 𝑔𝑘−1)

| ≤ 2
‖𝑔𝑘‖2

‖𝑔𝑘−1‖2
≤ 2

�̅�2

𝛾2
= 𝑏. 

 

Using ‖𝑥𝑘 − 𝑥𝑘−1‖ ≤ 𝜆, we have 

|𝛽𝑘
𝐴𝑀𝑍𝑅| = |

𝑔𝑘
𝑇(𝜏𝑘𝑔𝑘 − 𝑔𝑘−1)

𝜏𝑘‖𝑔𝑘−1‖2
| ≤

‖𝑔𝑘‖(‖𝜏𝑘𝑔𝑘 − 𝑔𝑘‖ + ‖𝑔𝑘 − 𝑔𝑘−1‖)

𝜏𝑘‖𝑔𝑘−1‖2
 

                      ≤
2𝐿𝜆�̅�2

𝛾3 ≤
1

2𝑏
. 

 

The proof is completed.  ∎ 
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Since the CG formula in (10) satisfies the descent property and Property ∗, 

and the strong Wolfe-Powell satisfies Zoutendijk condition, we can present 

the following theorem without proof  based on Theorem 2. 

 

Theorem 3. Suppose that Assumption 1 holds. Consider any form of (2), 

(3) with CG formula as in (10) where 𝛼𝑘  computed by (4) and (5), then 

lim𝑘→∞ inf‖𝑔𝑘‖ = 0.  
 

To match the global convergence properties for the new formula with the 

weak-Wolfe-Powell line search, we need the following lemmas. For the 

proof the reader could refer to (Dai and Yuan, 1998). 

 

Lemma 3. Assume Assumptions 1 holds true and the sequences 𝑔𝑘 and 𝑑𝑘 

are constructed by Algorithm 1, and 𝛼𝑘  is computed by (6) and (7). 

Suppose (14) holds with Property ∗ . Then 𝑑𝑘 ≠ 0,  and ∑ ‖𝑢𝑘+1 −∞
𝑘=0

𝑢𝑘‖2 < ∞, where 𝑢𝑘 =
𝑑𝑘

‖𝑑𝑘‖
. 

 

Lemma 4. Consider Assumption 1 holds and the sequences 𝑔𝑘 and 𝑑𝑘 are 

constructed by Algorithm 1 and (14) holds. If 𝛽𝑘 ≥ 0 and Property ∗ 

satisfied, then there exist 𝜆 > 0 such that for any Δ ∈ ℕ and any index 𝑘0, 

there is an index 𝑘 > 𝑘0  satisfying |𝒦𝑘,Δ
𝜆 | >

𝜆

2
, where 𝒦𝑘,Δ

𝜆 =

{𝑖 ∈ ℕ: 𝑘 ≤ 𝑖 ≤ 𝑘 + Δ − 1, ‖𝑥𝑖 − 𝑥𝑖−1‖ > 𝜆}, ℕ define the set of all 

positive integers, |𝒦𝑘,Δ
𝜆 | defines the numbers of elements in 𝒦𝑘,Δ

𝜆 . 

 

By using Property ∗ and Lemmas 2 and 3, the globally convergence for (10) 

with (6) and (7) can be established similar to Theorem 3.3.3 in (Dai and 

Yuan, 1998). 

 

Theorem 4. Assume the sequences 𝑔𝑘 and 𝑑𝑘 are constructed by Algorithm 

1 with WWP line search and Lemmas 3 and 4 are true, then 

lim𝑘→∞ inf‖𝑔𝑘‖ = 0. 

 

3.2. Global Convergence with MWL Line Search 

Yu et al., 2009, designed modified Wolfe line search to establish the global 

convergence for PRP method. In this section we show that our method is 

globally convergent under MWL line search. The following lemmas are 

results from (8) and (9) which the proof can be found in Yu et al., 2009. 
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Lemma 5. Consider Assumption 1 is true. Suppose any iteration method of 

the form (2) and (3), and 𝛼𝑘 is obtained by (8) and (9). If for all 𝑘,  𝑔𝑘
𝑇𝑑𝑘 ≤

0, then lim𝑘→∞ 𝛼𝑘‖𝑑𝑘‖ = 0. 

 

Lemma 6. Consider that Assumption 1 holds. Suppose any iteration method 

of the form (2), (3), and 𝛼𝑘 is obtained by (8) and (9). If for all 𝑘, 𝑔𝑘
𝑇𝑑𝑘 ≤

0, then there exist a constant 𝑀1 > 0 such that 𝛼𝑘 > 𝑀1
|𝑔𝑘

𝑇𝑑𝑘|

‖𝑑𝑘‖2 , and by using 

Assumption 1 there exist a positive constant 𝛾 such that ‖𝑔𝑘‖ < 𝛾 for all 

𝑥 ∈ 𝐴. 

 

Lemma 7. Assume Assumption 1 holds, and 𝑥𝑘  is constructed by 

Algorithm 1. If for all 𝑘,  ‖𝑔𝑘‖ ≥ ε, there exists 𝑀2 > 0 such that for all 𝑘 

we have ‖𝑑𝑘‖ ≤ 𝑀2. 

 

Theorem 5. Assume the sequences 𝑔𝑘 and 𝑑𝑘 are constructed by Algorithm 

1 and 𝛼𝑘 exists by (8) and (9) if 𝑔𝑘
𝑇𝑑𝑘 ≤ 0. Then either 𝑔𝑘 = 0 for some 𝑘 

or lim𝑘→∞ inf‖𝑔𝑘‖ = 0. 

 

Proof.  Assume that 𝑔𝑘 ≠ 0 for all 𝑘. By the above lemmas we have  

 

lim𝑘→∞ 𝛼𝑘‖𝑑𝑘‖2 = 0,                                          (17) 

lim𝑘→∞|𝑔𝑘
𝑇𝑑𝑘| = 0.                                          (18)  

 

Use the forms (3) and (10) with Assumption 1, then 

 

𝑔𝑘
𝑇𝑑𝑘 = −‖𝑔𝑘‖2 + 𝛽𝑘𝑔𝑘

𝑇𝑑𝑘−1. 

This implies 

‖𝑔𝑘‖2 ≤ |𝑔𝑘
𝑇𝑑𝑘| + |𝛽𝑘𝑔𝑘

𝑇𝑑𝑘−1| ≤ |𝑔𝑘
𝑇𝑑𝑘| +

|𝑔𝑘
𝑇(𝜏𝑘𝑔𝑘 − 𝑔𝑘−1)|

𝜏𝑘‖𝑔𝑘−1‖2 |𝑔𝑘
𝑇𝑑𝑘−1|

≤ |𝑔𝑘
𝑇𝑑𝑘| +

‖𝑔𝑘‖|𝜏𝑘𝑔𝑘 − 𝑔𝑘−1|

𝜏𝑘‖𝑔𝑘−1‖2
‖𝑔𝑘‖‖𝑑𝑘−1‖

≤ |𝑔𝑘
𝑇𝑑𝑘| + 2𝐿

‖𝑔𝑘‖3𝛼𝑘−1‖𝑑𝑘−1‖2

‖𝑔𝑘−1‖3
. 

 

Taking the limit for both side and using (17) and (18), then 

lim𝑘→∞ inf‖𝑔𝑘‖ = 0.  ∎ 
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4. Numerical Results and Discussion 

Here, some of standard optimization test functions are taken from 

(Bongartz et al., 1995), (Andrei, 2008), and (Adorio and Diliman, 2005) to 

evaluate the efficiency of the new coefficient, we compare the new 

coefficient with the other conventional and recently CG methods; we 

choose WYL, VHS, NPRP, and FR formulas.  
 

TABLE 1:  Example functions which used with the strong wolf condition 

 

Function Number of variables Initial points 

   

Ex. White & Holst fun. 500,1000,5000,10000  (-1.2,1,-1.2,1…),( 5,5,…,5), 

(10,10,…,10),( 15,15,…15) 
Ext. Rosenbrock fun.  500,1000,5000,10000 (-1.2,1,-1.2,1…),( 5,5,…,5), 

(10,10,…,10),( 15,15,…15) 

Six hump fun. 500,1000,5000,10000 (0.5,…,.5) ( 1,1,…,1) ,(2,2,…,2), 
Ex. Beale fun. 500,1000,5000,10000 (1,1,…,1),  (5,5,…,5), 

(10,10…,10),(15,15,…,15) 

Three hump fun. 500,1000,5000,10000 (.5,.5,…,.5), (1,1,…,1), (2,2…,2), 
(10,10,…,10) 

Ext  Himmelblau fun. 500,1000,5000,10000 (1,1,…,1), (5,5,…,5), 

(10,10…,10),(15,15,…,15) 
Diagonal 2 fun. 500,1000,5000,10000 (.2,.2,…,.2), (.25,.25,…,.25), 

(.5,.5,…,.5),(1,1,…,1) 

NONSCOMP fun. 500,1000,5000,10000 (1,1,…,1), (-1,-1,…,-1), (-2,-2…,-2),  
(-5,-5,…,-5) 

Ext. DENSCHNB fun. 500,1000,5000,10000 (1,1,…,1), (5,5,…,5), 

(10,10…,10),(15,15,…,15) 
Shallow fun. 500,1000,5000,10000 (-2,-2,…,-2), (2,2,…,2), (5,5…,5), 

(10,10,…,10) 

Booth fun. 100, 200,300, 400, 500 (.5,.5,…,.5), (2,2,…,2), (5,5…,5), 
(10,10,…,10) 

Ex. quadratic penalty fun. 500,1000,5000,10000 (2,2,…,2), (5,5,…,5), (10,10…,10), 

(15,15,…,15) 
DIXMAANA fun. 500,1000,5000,10000 (2,2,…,.2), (5,5,…,5), (10,10…,10), 

(15,15,…,15) 

DIXMAANB fun. 500,1000,5000,10000 (-2,-2,…,-2), (-1,-1,…,-1), (0,0…,0), 
(1,1,…,1) 

NONDIA fun. 10,20,30,40,50 (-2,-2,…,-2), (-1,-1,…,-1), (0,0…,0), 

(1,1,…,1) 
Ex. Tridiagonal 1 fun. 500,1000,5000,10000 (1,1,…,1), (-1,-1,…,-1), (2,2…,2), 

(5,5,…,5) 

DQDRTIC fun. 500,1000,5000,10000 (-1,-1,…,-1), (1,1,…,1), (2,2…,2), 
(3,3,…,3) 

Diagonal 4 fun. 500,1000,5000,10000 (1,1,…,1), (5,5,…,5), 

(10,10…,10),(15,15,…,15) 
Raydan 2 fun. 500, 1000, 5000,10000 (1,1,…,1), (5,5,…,5), (10,10…,10), 

(15,15,…,15)  

The Table reports some of standard test function which is used to test the efficiency of the new 
method and comparing with the other CG methods, the first column  present the number of 

function from above list, the second column present the dimension/s which is used in the 

programming code, and the last column present the initials values. Notice that for every 
dimension we test four initial points i.e. a large number of data which lead us to more accuracy. 

Notice that, Ex.  mean Extended, and fun. mean function. 
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The tolerance 𝜀 is chosen to be 10−6 for all formulas to study how the efficiency of 
these formulas towards the optimal solution, we choose the gradient value as the stopping criteria. 

We used  Matlab 7.9 program, with hosted computer Intel® Core™ i3 CPU and 2GB of DDR2 
RAM, and 4GB DDR2 RAM. Figures 1 and 2 are constructed by using a performance profile 

presented by Dolan and Moré (2002). 
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From Figure 1 and Figure 2, it is clearly demonstrated that the new 

coefficient method is better than other methods. The best method has a 

curve that is top and right of the graph. In addition the new coefficient solve 

all above test functions where the other methods cannot.  
 

5. Conclusion 

We present a new CG formula that similar to PRP method and the 

global convergence properties are presented with several line searches. Our 

numerical results had shown that the new coefficient has efficiency when it 

compared to the other modern CG formulas. In the future work, we will 

focus at speed, accuracy, and memory space, using hydride or new 

nonlinear CG methods. In addition we will try to compare several line 

searches under new or traditional CG methods. 
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Figure 2: Performance profile 

based with the No. of iterations 

 

Figure 1: Performance profile 

with the CPU time.    
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